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Abstract

This paper intended to introduce the Bayesian network in
general and the Naive-bayes classifier in particular as one of
the most successful intelligent systems to classify damages
in composite materials. A method for feature subset
selection has also been introduced. The method is based on
mean and maximum values of the amplitudes of waves after
dividing them into folds then grouping them by a clustering
algorithm (e.g. k-means algorithm). The Naive bayes
classifier and the feature subset selection method were
analyzed and tested on sets of data. The data sets were
conducted based on artificial damages created in quasi-
isotopic laminates of the AS4/3501-6 graphite/epoxy system
and ball bearing of the type 6204 with a steel cage. The
Naive bayes classifier and the proposed feature subset
selection algorithm have been shown as very effective
techniques for damage detection in composite materials.

Introduction

XTI

Recently, there has been a tremendous growth in the
usage of laminated composite materials (LCMs) in all
types of engineering structures (e.g. aerospace,
automotive, and sports). LCMs are fabricated by
stacking plates or plies of composite materials
together to acquire unique properties (e.g high
strength and stiffness, and light weight) that cannot be
guaranteed by individual constituents of the laminate.
However, in practical situations, material failure or
damage may occur during manufacturing processes or
in-service. The manufacturing related damages are
like foreign object inclusion, porosity, and resin rich
areas. In-service damages can happen in the case of
aeronautical materials because a tool is dropped
during maintenance, there is a bird or hail strike in
plain flight, perhaps runway debris striking the aircraft
during takeoff or landing. The damages have the
potential of growing and leading to catastrophic loss of
human life, and decrease in economy. Examples of
real-life damages can be shown as airline crashes,
space shuttle explosions, and building and bridge
collapses. The early detection and characterization of
in-situ damages in composite materials are very
significant to ensure their structural health and
integrity, prevent them from catastrophic failures, and
prolong their service life. [d: 3

One of the potential solutions used for damage
detection is the structural health monitoring (SHM).
The literature defines the SHM as the acquisition,
validation, and analysis of technical data to facilitate
the life-cycle management decisions [2]. Kessler et al.
[3] stated that SHM denotes a reliable system with the
ability to detect and interpret adverse changes in a
structure due to damage or normal operation. There
are several advantages to using a SHM system over
traditional inspection cycles, such as reduced down-
time, elimination of component tear-down inspections,
and the potential prevention of failure during operation.
Aerospace structures have one of the highest payoffs
for SHM applications since damage can lead to
catastrophic and expensive failures, and the vehicles
involved undergo regular costly inspections [3].

There are several components required to design a
successful and robust SHM system for dam-age
detection. It essentially involves implementation of a
nondestructive evaluation (NDE) technique (e.g.
ultrasonic, eddy-current, acoustic emission, and
radiography) to a structure to acquire data for the -
damage detection. The other components are sensing
systems, communications, and algorithms
quantitatively assess the damage detection by
interpreting the large amounts of data collected by the
sensors. The need for quantitative damage detection
methods that can be applied to complex structures has
encouraged the SHM community to borrow and
implement many techniques from artificial intelligent
(Al) and machine learning (ML). In some NDE
techniques like ultrasonic, actuators and sensors aré
mounted on the surface of the testing material. The ¢
actuators are used to propagate waves into the -
material. The waveforms reflected by damages and -
the surfaces of the material are captured and digitized
by the sensors for comparison to waveforms captured :
during the calibration of the damage detection system: ;
The results of this test are then fed into an A/ or ML
technique to quantitatively specify the characteristics
of the damages found on the material. :
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nondestructive evaluation (NDE) technique (e.g.
ultrasonic, eddy-current, acoustic emission, and
radiography) to a structure to acquire data for the
damage detection. The other components are sensing
systems, communications, and algorithms to
quantitatively assess the damage detection by
interpreting the large amounts of data collected by the
sensors. The need for quantitative damage detection
methods that can be applied to complex structures has
encouraged the SHM community to borrow and
implement many techniques from artificial intelligent
(Al) and machine learning (ML). In some NDE
techniques like ultrasonic, actuators and sensors are
mounted on the surface of the testing material. The
actuators are used to propagate waves into the
material. The waveforms reflected by damages and
the surfaces of the material are captured and digitized
by the sensors for comparison to waveforms captured
during the calibration of the damage detection system.
The results of this test are then fed into an Al or ML
technique to quantitatively specify the characteristics
of the damages found on the material.

Neural network (NN) is one of the ML techniques
which has been widely adopted by many researchers
in this area[4]. Chakraborty[5] introduces an approach
that predicts the presence of embedded delamination
(in terms of location, shape, and size) in fiber
reinforced plastic composite laminates using back
propagation (BP) NN with 3 layers (input, hidden, and
output). The network has been tested to predict the
presence of delamination along with its size, shape,
and location. Su and Ye [6] have demonstrated a lamb
wave (LW) propagation-based quantitative
identification scheme for delamination in carbon-fiber
reinforced polymer (CFRP) composite structures using
a multi-layer BP NN. Other methods like rule-based,
fuzzy logic, and genetic algorithms also have been
adopted for the damage detection and identification.

Recently, Bayesian network (BN) has emerged as a
ML technique and a generalizing graph-based
framework for creating statistical models of domains
with inherent uncertainty. BN has attracted a great
deal of attention in research institutions as well as in
industry as a good modeling tool for medical systems,
risk prediction, forecasting, robotics, computer games,
and etc.[7, 8]. Nevertheless, the BN has not been well
recognized by the SHM community.

The objective of this paper is to introduce BN in
general and Naive bayes in particular as a classifier to
simulate damage detection in LCMs. The paper also
aims to present a novel method for feature subset
selection of wave amplitudes of damage detection.

The paper is organized as follows, section two gives a
preliminary overview to BN based on composite
materials. Section three shows the Naive bayes in
SHM systems and how it can be utilized for damage
detection employing. Section four introduces the novel
f-fold feature subset selections. Section five shows the
experiments and the data sets used to analyze and
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test the f-fold algorithm. Section six shows the results
and evaluation of the classifier and the f-folds
algorithm.

Bayesian Networks

OIS

BNs are defined as graphical models that allow users
to encode relationships between variables of interest
and reason about uncertain domains. They consist of
a qualitative part, where features from graph theory
are used, and a quantitative part consisting of
potentials, which are real-valued functions over a set
of variables from the graph. They consist of the
following:

= A network structure G = V, E, where V =V, V, .. .V,
represents a set of variables and E represents a set of
directed arcs between the variables.

= Each variable has a finite set of mutually exclusive states.

= A set of conditional probability tables (CPTs) associated
with each variable.

The directions of the arcs in BNs often represent
causal dependency between variables. In BNs, a
variable is a parent of a child, if there is an arc from
the former to the later. BNs model the quantitative
strength of the connections between them, allowing
their probabilistic beliefs to be updated automatically
as new information arrive. The arcs in any BNs are not
permitted to be directed cycles, one cannot start from
a variable and simply come back to it by following the
direction of the arcs in the network. For this reason the
networks are known as directed acyclic graphs
(DAGSs) [7, 8].

BNs can be built by an expert on the domain of study,
a structure learning algorithm that automatically
extract the structure from a data set, or a combination
of both.

The values of each variable should be mutually
exclusive and exhaustive, that means the variable
must take on exactly one of these values at a time. For
example, if one considers building a model to predict
the presence of a damage in a composite material,
many factors might be taken into account, e.g. the age
of the material (Age) and whether a tool dropped on
the material (7Tool-Drop). These factors can be
represented as variables in the model connected by
directed links according to the direction of impacts
(see Figure 1). In the figure, the variables ToolDrop
and Age have an impact on the variable Damage. That
means the presence of the damage can be
determined

by the states of ToolDrop and Age. It cannot be agreed
that the damage on the material has caused the
dropping of the tool on the material or has an impact
on the age of the material. Every variable can take one
of a different type of discrete values (the states of the
variable). The variables Damage and ToolDrop might
be represented by states, which take boolean values
yes and no. The variable Age might be represented by




states, which take boolean values yes and no. The
variable Age might be represented by states that take
ordered values, new, medium, and old.

ToolDrop @

Fig. 1: A small BN structure for damage detection in LCM

If A is assumed to be a variable with n states,
aa;, ....a, then P(A) denotes a probability distribution
over these states:

BCAY = (xnx .. . X} x:<0; Zx,. = (1)

i=1

where x; is the probability of A being in state a;. This
can be written as P(A=q;) = x; or P (a;) = x;, e.g. P(Age
=new) = 0.8.

The basic concept in the BN treatment of certainties in
causal networks is conditional probabilities. If the
variable B has m states b;, b,, b,, the conditional
probability statement can be shown as follows:

"The probability of the event a given the event b is x."

which can be written as P(a| b) = x. The probability
P(4| B) implies an n m table including the probabilities

P(aj|b)).
The fundamental rule for probability calculus is:
P(a|b)P(b) =P(a,b) (2)

where P(a, b) is the probability of the joint event a and
b. From this, it can be said that P(e b) P(b) = P(b a)
P(a), and this yields the well known Bayes'rule:

P(a|b)P(b) 3)
P(a)

In Figure 1, the variable Damage has two parents and
the variables ToolDrop and Age have no any parents.
The joint probability distributions for the variables are
shown as P(Damage| Age, ToolDrop) P(ToolDrop),
and P(Age). These probabilities are determined by an
expert or automatically extracted from a data set.
Since the variables ToolDrop and Age have no
parents, their prior probabilities can be specified as
follows:

P(b|a) =

= P(ToolDrop = yes) = 0.8 and P(ToolDrop = no) = 0.2

= P(Age = new) = 0.2, P(Age = medium) = 0.7, and
P(Age = old) = 0.1

The variable Damage has 3 states and 2 parents,
each parent with 2 states. The conditional probability
distribution of this variable can be shown as on Table
1. The table has 12 probability values (3 2 2).

Table 1: CPT for P (Damage| Age, ToolDrop). The yes and no in the
first column represent the states of Damage.

ToolDrop yes no
Age new | medium | old | new | medium

yes 0.2 0.4 0.9 | 0.01 0.5
no 0.8 0.6 0.1 |0.99 0.5

BNs give full representation of probability distributions
over their variables. They can be conditioned on any
subset of their variables, supporting any direction of .
reasoning. That means any variables may be query.
variables and any may be evidence variables.
Whenever new information have arrived new beliefs
can be calculated. We have shown that P(ToolDrop
yes) = 0.8 and P(Age = old) = 0.1. Suppose it ha
been discovered that a tool is dropped on the material
and the material is very old, then P(ToolDrop = yes)
1.0 and P(Age = old) = 1.0. These probabilities are
shown in Figure 2 as percentages (700.00 and 00.00)
on bold fonts. This kind of probabilities are sometime
referred as evidence or instantiation. In BNs, whe
new evidence arrives to some variables, the beliefs o
other variables may be changed. This can be showr
by carefully studying Figure 2. This process o
conditioning on some variables, when observing th
value of other variables, is known as probabili
propagation, inference, or belief updating. :

BNs are powerful tools for knowledge representatio
and inference under uncertainties. Nevertheless, the
are not considered very well as classifiers in SH
systems. Naive-bayes is one of the BNs classifier
(e.g. C4.5) that surprisingly can outperform man
sophisticated classifiers when working on data set
where the features are not strongly correlated.

Naive-bayes Classifier in SHM

Naive-bayes has a strong assumption that a
variables in the network are independent of th
classification variable (Figure 3). It is very easy to buul.
a Naive-bayes network structure, and it does
require a structure learning algorithm.

The amplitudes shown in Figure 4 represent volt
amplitudes of Lamb-waves produced and collected
PZT sensors and actuators mounted on the surfac
quasi-isotropic graphite/epoxy laminates. The fi
specimen is a control unit (laminate without damage
and the rest of the specimen contain artifi
damages. These damages are delimination, cra
and hole. The figure shows that sound waves behaV
differently when passing through the laminate with
and with damage, and every damage produ
different amplitudes. Amplitudes with many case
different kind of damages can be used to lear
conditional probability tables of variables (P(Amp
| Damage)) in the network. Ultimately, the model ¢
be used to predict the damages in lamind




Age
ToolDrop 000.00 new
100.00 | yes 000.00 | medium
000.00 no 100.00 old
o /
. -
e ./
Damage
90.00 yes
10.00 no

(a) The evidence that the tool is (b) The evidence
that the tool is not dropped (Tool/Drop = yes) and
the ma dropped (ToolDrop = no) and the material is
old (Age = old), increased our rial is new (Age =
new), decreased our belief on the damage to 90%

Age
ToolDrop 100.00 new
000.00 | yes 000.00 | medium
100.00 no 000.00 old
//
B v
Damage
01.00 yes
99.00 no

(b) The evidence that the tool is not dropped
(ToolDrop= no) and the material is new (Age=
new), decreased our belief on the damage to 1%.

Fig. 2: Changing of believes on BNs, when some evidence are entered

Amplitude

Amplitude,

Amplitude,,

Fig. 3: A Naive-bayes for damage detection by using some amplitudes of wave

composite materials with the highest posterior
probability. The probabilities of the damages are
determined by entering the new evidence obtained
from the amplitudes of the new case to the network.
The amplitudes shown in Figure 4 were generated by
using a constant interval of time (microseconds). For
every laminate a set of 600 amplitudes were collected.
If all of these amplitudes were used as variables on
the damage detection model, the model would be
overwhelmed, complicated, and its accuracy might
slightly be decreased. Different techniques have been
adopted for feature subset selections to decrease the
size of the data and increase the accuracy. Some of
these techniques exiract the peaks of the amplitudes
as feature subsets, but it is very difficult to be sure
whether these peaks can be representative to the
whole wave. The rest of the techniques have different
kinds of limitations and disadvantages. So as to
overcome some of these limitations and tackle some
of these disadvantages, the f-folds feature subset
selection algorithm has been developed.

[-folds Feature Subset Selection Algorithm

In Figure 4, the amplitudes formed using a constant
interval of time (microseconds). A different data set
might be acquired, if the interval value had been
changed. If it had been assumed that the interval was
increased 70 times more than the original one, then
the original amplitudes would be divided into 60 folds
(10 amplitudes in each fold). In this case 10 different
data sets would be formed each with 60 amplitudes.
The amplitudes included in each set depend on the
first amplitude selected from the first fold, if the first
amplitude was the first to be included, then the first
amplitudes in other folds would be included to the data

by assigning the amplitudes with the same index in all

1=

set, if the second one was the first one to be included,
then the seconds in all other folds would be included in
the data set, and etc. This has been used as a base to
formalize the k-folds feature subset selection algorithm
shown below.

Algorithm 1 (k-folds feature subset selection algorithm)

Input:
Amps = amp4, amp,, , amp, (Amplitudes to be clustered).
k (number of clusters), f (number offolds).

Outputs:

Means = m(c1), m(c2), , m(ck)
Maxs = max(c1), max(c2), , max(ck)
Mins = min(c1), min(c2), , min(ck)

procedure Clustering
1. Divide Amps into ffolds (fold(1), fold(2), , fold(f)),
= fold(f), fold(i) = fold(j)4, fold(j),, fold(j)m,

2. Create a new data set NewAmp = nAmp(1), nAmp(2),
where A = fold(k)i A nAmp(i)1 i mand 1 k (the number of
elements in each fold is m = n f).

3. Implement a clustering algorithm (e.g. k-means) on
NewAmp, to return k clusters.

4. Return the mean, maximum, and minumum values of the
clusters.

The input to thef-folds feature subset selection
algorithm (Algorithm 1) is a set of n amplitudes (Amps
= amp4, ampy, , amp,). In step 1 the algorithm divides
the data set intof folds. All folds contain the same
number of m amplitudes, where m = n f. In step 2 the
algorithm forms a new set of data containing m records
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(a) Without damage (b) Delimination (c) Crack
(control)

(d) Hole

Fig. 4: Time trace of voltage amplitudes collected from graphite/epoxy laminates

folds to the data set as one record (e.g. the first
amplitudes in all folds form the first record and so on).
This creates the data set NewAmp (nAmp(1),
nAmp(2), , nAmp(m)). The number of variables in each
record is f (the number of folds). In step 3 the
algorithm implements a clustering algorithm (e.g. -
means algorithm or EM algorithm) on NewAmp to
divide their instances into k clusters. Since each
record has f variables, the algorithm returns f mean
values, f maximum values, and / minimum values of
each cluster. These values would be considered as
representatives to the clusters and when combined
together they can replace the original data set. For
example, if there are 100 instances in the cluster, only
3 instances are used (means, maximums, and
minimums). The total number of the variables (7) in
each damage type would be reduced to 3 x fx k, when
the means, maximums, and minimums of the clusters
are considered. Finally, it will be reduced to fx k, if only
the means are considered. The values of fand k must
be determined by the user such that 1 << n, which
believed to decrease the number of variables to a
minimum that highly increase the accuracy of the
model and simplify it.

Specimens and Data Sets ...

Two data sets collected and used in this paper. The
data sets were collected using two sets of specimens.
The first set used to test the f~folds feature sub-set
selection algorithm and the second one was used to
test the Naive bayes classifier. The two sets of the
specimens are described below.

Quasi-isotropic Laminates Data

The specimens used to test the /~folds feature sub-set
selection algorithm were collected from Kessler [3].
The specimens were 25cm x 5cm rectangular
[90/£45/0]s quasi-isotropic laminates of the AS4/3501-
6 graphite/epoxy system. Three PZT piezoceramic
patches mounted on the surface of each specimen.
The PZT cut into 2ecm x 0.5cm patches so that the
longitudinal wave would be favored over the
transverse one, and three patches used on each
specimen to actuate and accurately measure the
transmitted and reflected waves. The first channel,
which served as the trigger for all of the channels,
connected to the output channel and actuating PZT,
two others connected to the sensing piezoceramic
patches to the specimen to serve as a control channel
in order to zero out drift. A few shapes of piezoceramic
patches used to produce Lamb waves, and as

expected waves propagated parallel to each edge, i.e.
longitudinally and transversely for a rectangular patch
and circumferentially from a circular piezo. Various
types of damages were introduced to the specimens
including, holes, fiber fracture, matrix cracking, and
delamination. Lamb waves were propagated to the
specimens by using 15 and 50KHz frequencies.

Every one of the data sets was divided into different
number of f folds (3 < f< 10) and a subsets of data
were created from these folds for every data set.
When the graphs of the subsets of every data set were
plotted, there were many subsets showed similar
shape of graphs as shown in Figure 5. This gives an
indication that the subsets of the data set can be
divided into clusters, where the means of these
clusters can be used as representatives to these
clusters for damage detection.

The Ball-bearing Data

The data set considered to test the Naive bayes
classifier is a set of vibration data from a type of ball
bearing operating under different fault conditions. The
ball bearing is of the type 6204 with a steel cage. The
raw measurement data took the form of an
acceleration signal recorded on the outer casing for
the bearing in five states:

1. New ball bearing (N).

2. Quter race completely broken (O).

3. Broken cage with one loose element (B).

4. Damaged cage, four loose elements (D).

5. No evident damage, badly worn ball bearing (ND).

The rotational frequency was 24.5 625Hz and a tacho-
signal was used for the measurement. The sampling
frequency for the time data was 716384Hz and the
acquisition system was a Bruuel and Kjaer Spectrum
analyzer. The points were recorded in 56 instances of
2048 samples, where 11 instances for case 1, 9 for
case 2, 12 for each case of 3, 4 and 5.

Each signal was divided into overlapping 64-point
intervals each offset by eight points from its
predecessor. Each set was Fourier transformed and
the magnitude of each spectral line was recorded. This
yielded a sequence of 32-component vectors for
classification [10].
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Fig. 5: The similarity of wave shapes of the data sets created by dividing wave of 600 amplitudes into 10 folds.

Results and Evaluations R

The Naive bayes classifier used in this study was
implemented in the open-source machine learning
package Weka [11]. The aim of the Naive bayes
classifier was to assign the data to five class labels.
Before implementing the classification algorithm the
data were preprocessed. Firstly, the data were
prepared for the f-fold feature sub-set selection
algorithm. Special softwares were developed for the
feature subset selection algorithm. The programming
language used was Java. Next the data were
formatted using the Weka format. The clustering
algorithm used for the f~fold algorithm was the -
means algorithm. Since the number of clusters must
be specified for the k-means algorithm, different
number of clusters were tested.

In this paper 8 folds with different number of clusters
ranging from 2 to 8 were used. The features extracted
for the classification were the maximum and mean
values of the clusters amplitudes. It has been
assumed that the maximum values represent the
peaks of the amplitudes. Table 2 shows the confusion
matrix of the classification result using 8folders and
4clusters. In the table, the number of correctly
classified instances is 52 out of 56 (the accuracy is
946429%) and incorrectly classified instances is 4
(714%).

Table 2: The classification results when the number of clusters

was 4
NIO B D N classifiedas
110 0|0 0 N
0 0
010 ] 0 B
010 B i D
010 O 0 el N D

The classification algorithm has been implemented
many times for the same number of clusters. Most of
the time similar results were obtained; the best results
were obtained when the number of clusters were 3
and 4. The best classification assignment obtained
was 94.65% when the the number of clusters was 4. It
can be seen from the table that 2 number of clusters
slightly decreases the classification accuracy but using
more than 4 clusters decreases the accuracy but does
not affect it so much.

Figure 6 shows the classification accuracies obtained
when using the mean values together with the peak
values, the mean values alone, and the peak values
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alone. Obviously, the best accuracies were obtained
when the mean values used together with the peak
values for the classification. The mean values showed
better results than the peak values. Generally, in all
cases the best accuracies were obtained when the
number of clusters was 3 and 4. The accuracies have
not shown any change when using more than 4
clusters.

Number of Clusters | Correctly #(%) | Incorrectly #(%)
2 49 (87.5) 7(12.5)
3 52 (92.86) 4(7.15)
4 53 (94.65) 3(5.35)
5 52 (92.86) 4(7.14)
6 52 (92.86) 4(7.14)
7 52 92.86) 4(7.14)
8 52 (92.86) 4(7.14)

" Table 3: The tables compare the classification results when different

number of clusters ranging from 2 to 8 were used (the number of
folders was 8)

95
90 R e sy B 7T

85
80
5

70
85

Classification Accurazy (%)

&0
&8

50

= = 4 s & 7 8
Number of Clusters

Fig. 6: The figure shows the improvement in the classification
accuracy when using the mean and peak values together rather
than using them separately

Conclusions

Bayesian networks in general and Naive-bayes in
particular are powerful formalisms for reasoning under
uncertainty that can be employed as classification
techniques for damage detection in composite
materials. The f-fold feature subset selection algorithm
shows the best classification results when the mean
values used together with and the peak values rather
than using them separately.

In this paper, the ffold feature subset selection
algorithm has been tested only for 8 folds; it is planned
in the future that the algorithm will be tested for
different number of folds. It is planned also to improve
the algorithm so as to be capable to specify the
number of folds and clusters. The results Naive bayes
classifier will also be compared with other
classification algorithms (e.g Neural networks).
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