
 Optimization of Multiple Continuous Queries over
RFID Streaming Data

Haipeng Zhang, Wooseok Ryu, Md. Kafil Uddin, Bonghee Hong
Department of Computer Engineering

Pusan National University
Pusan, Republic of Korea

E-mail: {jsjzhp, wsryu, mdkafil, bhhong}@pusan.ac.kr

Abstract—RFID technology enables a new era of business
optimization. With the development of RFID technology, more
and more RFID applications have been developed. In RFID
system, RFID middleware collects, filters, and integrates large
volume of streaming data gathered continuously by
heterogeneous readers to process queries from applications.
These queries are called continuous queries as they are executed
continuously to extract useful information from data streams.
EPCglobal proposed an Event Cycle Specification (ECSpec)
model, which is a de facto standard query interface for RFID
middleware. When the middleware system processes many
continuous queries, query optimization is quite important for
their execution and enhancing the performance of the system. In
this paper, we propose a multiple continuous query optimization
method for RFID data streams, which is based on query (ECSpec)
execution conditions and filter conditions analysis.

Keywords-RFID middleware; Continuous queries; Query
optimization.

I. INTRODUCTION
The Radio Frequency Identification (RFID) as a frontier

technology is an automatic identification and data capture
technology that uses RF waves to transfer data between a
reader and a tag which attached on an object. RFID provides
fast, reliable, and automatic identifying, locating, tracking and
monitoring physical objects without line of sight. With such
benefits, RFID is gradually being adopted and deployed in
various applications, such as supply chain management
systems, warehouses management, assets tracking, and
ubiquitous computing applications, etc.

RFID system mainly consists of four components: tags,
RFID transceivers or readers, RFID middleware, and RFID
application [1, 2]. Tags store the unique ID (EPC code) and
related data in their memory to uniquely identify the object.
Readers are used for reading the information stored at RFID
tags placed in their interrogator zone and sending the streaming
data to middleware through wired or wireless interfaces.
Middleware systems collect data from readers, process
receiving data according to the requests of applications, and
generate reports sending to applications. Applications are the
software components which issue requests to middleware and
provide business services to users, such as supply chain
management or warehouses management.

In the RFID system, middleware should process the high
volume of raw RFID streaming data to reply the requests of
applications. These requests are called continuous queries [3, 4]
because they are executed continuously to extract information
from data streams. These queries are usually triggered by
special events such as the arrival of new data items from data
streams or system timer alarms, get useful information from
data streams by filtering, compose new information joining
multiple data streams, and send query results to users. When
users register many continuous queries, middleware system
processes these queries continuous over large volume of
streaming data. It may result the response delay or even burden
for middleware, so multiple query optimization is quite
important for efficient execution and enhancing the
performance of middleware system.

For collecting, filtering, and grouping RFID streaming data,
EPCglobal proposed an Event Cycle Specification (ECSpec*)
model [5], which is a de facto standard query interface for
RFID middleware. ECSpec can be treated as continuous query
defined by users and continuously executed in middleware,
which has execution and filter conditions. Once an ECSpec
defined by user, it will be subject to a lifecycle state transition
specified in the ECSpec. An ECSpec must specify start
conditions and stop conditions which together define a time
interval to extract information of interest from data streams and
generate the results. Queries having the same operators may
share a lot of intermediate results when they are executed at
close instants, but may involve only disjoint data when
executed at completely different instants. So, query execution
timing as well as common query predicates is a key to deciding
an efficient query execution plan. In this paper, we analysis the
properties of ECSpec to identify the execution patterns and
query conditions of it. Such patterns offer useful information
for optimizing the execution of multiple continuous queries. By
using this information, we form clusters of continuous queries
such that queries in the same cluster are likely to share the
intermediate result, extract common conditions from queries in
each cluster, and decide the optimal query execution plan.

The remainder of this paper is organized as follows. Section
2 presents some related work on continuous queries
optimization. Section 3 analyzes and explains ALE and RFID
continuous query execution model (ECSpec). Section 4
presents the proposed query optimization technique. Finally,
Section 6 concludes the paper with the future work.

* We use the term ECSpec and query interchangeably throughout the paper.

mailto:bhhong%7d@pusan.ac.kr�

II. RELATED WORKS
There are many research efforts have been made on

continuous queries processing and continuous queries
optimization. OPenCQ[4] is a system integrating distributed
heterogeneous information sources and supports continuous
queries. Continuous queries in OpenCQ consist of three parts:
query conditions, trigger condition, and terminal condition.
When the trigger condition is satisfied, the query is executed
continuously until the terminal condition is satisfied. However,
sophisticated multiple query optimization is not addressed.

NiagaraCQ [6, 7] proposes a multiple query optimization
method for its continuous queries. It can handle large-scale
queries and supports incremental multiple queries optimization.
Simple selection predicates are grouped by their expression
signatures and evaluated in chains. However, continuous
queries in NiagaraCQ are simple and do not use window
operators to specify time intervals of interest as in the window
join, which is not suitable for extracting useful information
from RFID data streams.

TelegraphCQ [8] is another system designed to process a
large number of continuous queries. Based on eddy [9], it
realizes adaptive processing, dynamically reordering operators
to cope with changes of arriving data properties and selectivity,
and supporting multiple queries optimization by grouping and
indexing individual predicates. CACQ evaluates queries
aggressively; it picks up operators as soon as they become
executable and evaluates them immediately. In cases where
queries are associated with window-based time intervals and/or
the execution time specifications, this query evaluation method
may generate more redundant query results than are needed.

ARGUS [10] is a stream processing system implemented
atop commercial DBMSs to support large-scale complex
continuous queries over data streams. It supports incremental
operator evaluation and incremental multiple query plan
optimization as new queries arrive. It builds a whole query
network for all the queries, which costs time to maintain a big
query network.

There are some other works also related to data stream
processing. In [11] it split and merge query conditions, and
sends the common condition to the reader level to reduce the
duplicated data. It doesn’t consider sharing of the intermediated
data and only supports the reader implemented with RP
protocol [12]. STREAM [13] is another continuous queries
architecture which focuses on developing execution engine,
with emphasis on incremental evaluation methods and adaptive
processing on scheduling and approximate answers. However it
does not address queries optimization.

Traditional relational queries optimization schemes were
originally proposed in [14, 15]. Basically, they concentrate on
extracting common sub-expressions from among multiple
queries to share intermediate query results. In our approach, we
analyze the query execution patterns to form clusters of
continuous queries in which common query conditions can be
extract and get the efficient query execution plan.

III. APPLICATION LEVEL EVENTS
In RFID systems, readers read tags for a very large volume

of streaming data; however, the raw data generated is of a low
level and is not good to directly used for applications. These
applications require answers to specific questions from the
streaming data. So, there need a level of processing that
reduces the volume of data that comes directly from readers
into coarser “event” of interest to applications. This led
EPCglobal to develop the Application Level Events (ALE)
Specification which is the de facto standard interface for
filtering, grouping, counting RFID streaming data and
reporting to applications in various forms.

Through the ALE interface, applications may define and
manage event cycle specifications (ECSpecs). This interaction
may take place in a “pull” mode, where users provide the
ECSpec and the ALE in turn initiates or waits for read events,
processes the data, and returns the report. In this case, ECSpec
can be considered as one time queries. On the other hand, it
may also be done in a “push” mode, where the client registers a
subscription to a defined ECSpec, and thereafter the ALE
asynchronously sends reports to the applications when event
cycles complete. In this case, ECSpec can be considered as a
continuous query. Fig. 1 shows the operation description of
ALE. After an ECSpec defined by users, it can be subscribed
and continuous executed. When the ALE server receives users’
subscriptions, it first analyzes the ECSpec, and then starts to
receive EPC data from data sources. This data is collected in
every reader cycle, filtered by filter conditions and organized in
groups in every event cycle. Finally, reports will be generated
and sent to users.

Figure 1. The operation description of ALE

An ECSpec describes an event cycle and one or more
reports that are to be generated from it. It contains three main
parts which are a list of logical readers whose data are to be
included in the event cycle, a specification of how the
boundaries of event cycles are to be determined, and a list of
specifications each of which describes a report to be generated
from this event cycle (refer to Fig. 2). An ECBoundarySpec
specifies how the beginning and end of event cycles are to be
determined; it controls that how to execute the ECSpec. In
order to get the results from infinite RFID data streams,
ECBoundarySpec defines time windows in which data is
processed and results are generated at the end of each window.
Time windows can be determined by start and stop conditions.

The condition of logical readers represent that the data stream
generated from which reader should be processed. Each
ECReportSpec contains an ECFilterSpec which represents
what tags are to be included in the report.

Figure 2. ECSpec

ALE can support a lot of user clients and connect many
heterogeneous readers, so it may receive large volume of
streaming data generated by readers and many ECSpecs
defined by users. These ECSpecs continuously are executed in
ALE that may cause the response delay or reduce the
performance of ALE system. So queries optimization is a very
important method for continuous queries processing to
alleviate the system burden and get results in time. As we know,
if queries having the same operator may share intermediate
result when they are executed at close instants. For example, in
Fig. 1, the execution time of client 1 event cycle 1 is close to
client 2 event cycle 1, and the window range referred by client
1 event cycle overlaps the range of client 2 event cycle 1.
However, client 3 event cycle 3 is separated from other’s. And
if having some common operators, the intermediate results
generated within client 1 event cycle 1 contains the same
results generated within client 2 event cycle 2 as their
execution time intervals overlap with each other. Therefore, the
results of client 1 can be shared with client 2. The more
intermediate results can be shared, the more system load can be
saved. Thus, intermediate results can be shared or not definitely
affect the effectiveness of multiple continuous queries
optimization. Our proposed method of continuous queries
optimization is represented in the next section.

IV. CONTINOUS QUERIES OPTIMIZATION
As described above, continuous queries having some

common operators can share their intermediate results in case
of their have close execution time. In this section, we analyze
execution patterns of ECSpec and define similarity to form
clusters whose members have close execution times and large
overlaps of time intervals; and then extract common filter
conditions for each cluster and decide the optimal query
execution plan.

A. Query Execution Pattern Analysis
In order to get the queries that have close execution times,

we need analyze query execution patterns. As mentioned in
Section 3, ECBoundarySpec (Fig. 3) specifies the execution
conditions of the ECSpec. The startTrigger and stopTrigger
define triggers that may start a new event cycle or stop an event

cycle, respectively. The repeatPeriod parameter specifies an
interval of time for starting a new event cycle, relative to the
start of the previous event cycle. The duration parameter
specifies an interval of time for stopping an event cycle,
relative to the start of the event cycle. The last two parameters
specify stopping an event cycle. These two parameters are not
considered in this paper since they are rarely used. According
to ALE specification, a ECTrigger takes one main following
form: urn:epcglobal:ale:trigger:rtc:period.offset. A trigger of
this form means that it is delivered each time the number of
milliseconds past midnight modulo period equals offset. The
period defines a time period, in milliseconds between
consecutive triggers occurring within one day within the range
1≤period≤86400000. The offset defines a time interval in
milliseconds between midnight and the first trigger and the first
trigger delivered after midnight, and it must less than the
specified period. For example, the following trigger denotes a
trigger that occurs every hour on the hour:
urn:epcglobal:ale:trigger:rtc:3600000.0, that means it
continuously occurs at 0:00, 01:00, 02:00, etc.

Figure 3. ECBoundarySpec

An event cycle begins when the first start condition (repeat
period or one of the start triggers) occurs. If no start triggers are
specified, the first event cycle begins immediately after client’s
subscription of the ECSpec. The start conditions have no affect
on an event cycle which is in progress. The event cycle
terminates only when one of the stopping conditions (duration
or one of the stop triggers) specified above becomes true. Thus,
ECBoundarySpec must contain at least one stop condition. An
execution example of event cycle is shown in Fig. 4.
RepeatPeriod and duration are specified in the
ECBoundarySpec, the first event cycle begins immediately
after client’s subscription arrived and terminates when the
duration expires. Then, another event cycle begins when the
repeatPeriod has expired. The ECSpec is continuously
executed in this way until client unsubscribes it.

Figure 4. An execution example

B. Query Model Analysis
ALE specifies ECSpec as a standard query for RFID

middleware which contains several filter predicates related to
tags and readers. LogicalReaders is one of them which contain
at least one logical reader name. Each logical reader contains
one or more physical reader names and defines filter condition
for readers. Another important predicates is ECFilterSpec
which specifes what tags are to be included in the final report.
It contains a set of filter list members. Each filter list member
consists of three parameters: includeExclude, fieldSpec, and
patList (refer to Fig. 5).

Figure 5. ECFilterListMember

The fieldspec specifies which field of the tag is considered
to evaluate this filter, and the format for patterns in the patList.
The field usually specifies epc field that contains EPC codes.
The value of the includeExclude is INCLUDE or EXCLUDE.
If the value is INCLUDE, a tag is considered to pass the filter
if the value of the field matches at least one pattern specified in
the patList. If EXCLUDE, a tag is considered to pass the filter
if the value of the field doesn’t matches all the patterns
specified in the patList.

The patList specifies the patterns to compare with the
specified tag field. There are four types of valid patterns:
fixValue, *, [lo-hi], and &mask=value.If a pattern is a single
value (fixValue), the pattern matches a value equal to the
pattern. If a pattern is the *, the pattern matches any value. If a
pattern is in the form [lo-hi], the pattern matches any value
between lo and hi, inclusive. If a pattern is in the form
&mask=value, the pattern matches any value that is equal
value after being bitwise and-ed with mask. The two patterns *
and [lo-hi] specify a range of data matching them. If one
pattern covers fully or partially some space of another pattern,
the overlapped part can be extracted and shared by these
patterns. For example, p1=[3-10] and p2=[6-15] are
overlapped, and [6-10] is the common pattern of them.

C. Cluster Queries
According to the analysis above, we know that the start

conditions and stop conditions specify execution time intervals
of the query. So, once a query defined, we can get continuous
time intervals from it. Thus, according to these time intervals,
we can know which queries may share their intermediate
results if they have close executing time instances and
overlapped time intervals. In the following part, we introduce
how to detect queries that have large overlapped time intervals.

After some ECSpecs defined, we can get a set of execution
time intervals of each ECSpec. Since we do not know when
queries will be unsubscribed and in order to easily get the
execution time intervals, we suppose the queries cannot be
unsubscribed before the midnight since they begin executing.

In this case, we can extract the execution time intervals of each
query within a certain time span T which from the start time of
query to the midnight. After we get the set of execution time
intervals, we can detect which queries have overlaps of
execution time intervals. To achieve this, we cluster queries so
that queries in the same cluster have large overlaps of interval
which maybe share their intermediate results. In order to
cluster the queries, the similarity of queries is needed to define.
We define the unit-length interval on one day’s time and label
them sequentially. The length of unit-length interval is not
fixed and changeable. For example, we can set it as 10 minutes,
30 minutes, 1hours, etc. Now, for each query Qi, we can get a
set of Ti whose elements are sequence numbers of unit-length
intervals. Ti can be computed as follows:

 { }UItetT
iETe

i ∈∧∈=
∈
 (1)

Where ETi is the set of execution time interval of query Qi,
UI is the labeling number set of unit-length intervals.

Then the similarity (Qi, Qj) can be computed as follows:

ji

ji
ji TT

TT
)Q,Q(similarity




= (2)

The similarity of queries measures how much overlap exists
between two queries. If the similarity equals to 0, it means
these two queries have no overlaps of time intervals. If the
similarity equals to 1, it means these two queries have the same
execution time intervals. In order to form clusters, we need
compute similarity of all queries.

Using the similarity of all queries, we can form cluster that
have the high similarities. To generate the clusters, we use a
hierarchical clustering algorithm, where queries in the same
cluster have similarity more than or equal to a predefined
threshold θ (10 ≤≤ θ). The size of the generated clusters is
decided by the threshold which is also the criterion for deciding
how many overlaps of execution time intervals the queries
have. If θ equals to 0, it means all the queries form only one
cluster. If θ equals to 1, it means only queries having same
time intervals form a cluster.

Figure 6. Queries execution time intervals

For an example, there are three queries, and their execution
time intervals are shown in Fig. 6. We set the unit-length
interval to 1 hour and label them from 1 to 24. So, we can
compute time interval set of each query as follow:

T1 = {3, 4, 5, 6, 11, 12, 13, 14, 19, 20, 21, 22}

T2 = {4, 5, 6, 12, 13, 14, 20, 21, 22}

T3 = {6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21}

Using Ti, we can compute the similarities of each query:
similarity(Q1, Q2) = 0.75, similarity(Q1, Q3) = 0.22,
similarity(Q2, Q3) = 0.17. If the threshold θ set to 0.6, we can
get two clusters: Q1 and Q2 belong to a cluster, Q3 belongs to
another cluster.

After clusters formed, they need to update since during
system running queries insertion and deletion may occur. In
this case, we need to reconstruct clusters to maintain the best
similarity. However, this process is too expensive. To provide
high performance, we reconstruct clusters only when the
number of queries changes more than a predefined constant
value. For insertion, a new coming query is added to the cluster
having the query with highest similarity. For deletion, just
remove query from the cluster.

D. Query Optimization
As previous description, queries in the same cluster have

high similarities. So they can share some intermediate results
generated by common query filtering conditions. Therefore, we
need find out common query conditions and generate optimal
query plan for each cluster. To get the common conditions of
queries in the cluster, we refer to the algorithm proposed in [11]
to get common query conditions. We use its algorithms to split
and merge query filter conditions to find the common
conditions for queries in each cluster. Using these common
conditions, optimal query plan can be derived. We choose the
optimal query plan that can share common filter conditions as
more as possible. For example, there are there queries Q1, Q2,
and Q3 in the same cluster shown in table 1.

TABLE I. EXAMPLE OF QUERIES

Query Reader Specification Filter Condition

Q1 R2 1PatList1 = <[10-15]>

Q2 R1 2PatList1 = <[10-13]>

Q3 R1 3PatList1 = <[6-14]>

Figure 7. Query execution plans

Here we suppose all the patterns are EXCLUDE. Fig. 7
shows one possible execution plan for three queries. According
to the filter conditions, we know they have overlapped
conditions. So we split the patterns and find the overlapped
pattern. The patterns can be split as follows:

1PatList2 = <[10-13]>, 1PatList3 = <15>

 2PatList1 = <[10-13]>

 3PatList2 = <[6-9]>, 3PatList3 = <[10-13]>

 3PatList4 = <14>

 From split patterns, we know filter condition <[10-13]> is
the common condition of the three queries. So, we can change
the query plan by using new patterns. Fig. 8 shows the new
query execution plan for three queries. Comparing these two
execution plans, the second one is better than the previous
query execution plans shown in Fig. 7. Since there are two
query conditions are shared in the optimal execution plan. In
this case, it can reduce duplicated data and save processing
time. So, our query optimization method can share query
operators, reduce redundant result, save response time, and
enhance performance of ALE middleware.

Figure 8. An optimal execution plan

V. CONCLUSIONS
RFID middleware systems process high volume of raw

RFID streaming data to reply the requests of applications. To
process RFID data, EPCglobal has specified a de facto standard
query interface for RFID middleware. In this paper, we
proposed an optimization approach to execute continuous
queries for RFID middleware. In our approach, it first
computes similarities of queries based on queries execution
time intervals; then forms query clusters having high
similarities; at last for each cluster, finds the common filter
conditions and generates optimal query plans for each cluster.
The optimal query plan has the most common query conditions
to share intermediate results. So our approach can well used for
ALE to process RFID streaming data.

ACKNOWLEDGMENT
This work was supported by the Grant of the Korean

Ministry of Education, Science and Technology (The Regional
Core Research Program/Institute of Logistics Information
Technology).

REFERENCES
[1] K. Finkenzeller. RFID handbook. Wiley Hoboken, NJ, 2003.
[2] B. Glover and H. Bhatt. RFID Essentials. O’Reilly Media, Inc. 2006.
[3] D. Terry, D. Goldberg, and D. Nichols. “Continuous Queries over Append-

Only Databases,” Proc, ACM SIGMOD, 1992, pp. 321-330.
[4] L. Liu, C. Pu, and W. Tang. “Continual Queries for Internet Scale Event-

Driven Information Delivery,” IEEE TKDE, vol.11, no.4, 1999, pp. 610-628.
[5] The Application Level Events (ALE) Standard Version 1.1.

http://www.epcglobalinc.org/standards/ale/ale_1_1_1-standard-core-
20090313.pdf.

http://www.epcglobalinc.org/standards/ale/ale_1_1_1-standard-core-20090313.pdf�
http://www.epcglobalinc.org/standards/ale/ale_1_1_1-standard-core-20090313.pdf�

[6] J. Chen, D.J. DeWitt, F. Tian, and Y. Wang. “NiagaraCQ: A Scalable
Continuous Query System for Internet Databases,” Proc. ACM SIGMOD,
2000, pp. 379–390.

[7] J. Chen, D.J. DeWitt, and J.F. Naughton. “Design and Evaluation of
Alternative Selection Placement Strategies in Optimizing Continuous
Queries,” Proc. ICDE, 2002, pp. 345–356.

[8] S. Madden, M. Shah, J.M. Hellerstein, and V. Raman. “Continuously
Adaptive Continuous Queries over Streams,” Proc. ACM SIGMOD, 2002, pp.
49–60.

[9] R. Avnur, and J.M. Hellerstein. “Eddies: Continuously Adaptive Query
Processing,” Proc. ACM SIGMOD, 2000, pp. 261–272.

[10] C. Jin, J. Carbonell. “ARGUS: Efficient Scalable Continuous Query
Optimization for Large-Volume Data Streams,” IEEE IDEAS, 2006, pp.
256-262.

[11] M. Ashad, R. Wooseok, and H. BongHee.S. “Reader Level Filtering for
Query Processing in an RFID Middleware,” The Institute of Electronics
Engineers of Korea, Vol. 45 C1 No. 3, pp. 113-121.

[12] The Reader Protocol Standard Version 1.1.
http://www.epcglobalinc.org/standards/rp/rp_1_1-standard-
20060621.pdf.

[13] R. Motwani, J. Widom, and A. Arasu, etc. “Query Processing, Resource
Management, and Approximation in a Data Stream Management
System,” Proc. CIDR, 2003, pp. 245-256.

[14] T.K. Sellis. “Multiple-Query Optimization,” ACM TODS, vol.13, no.1,
1988, pp. 23–52.

[15] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. “Efficient and
Extensible Algorithms for Multi Query Optimization,” Proc. ACM
SIGMOD, 2000, pp. 249–260.

http://www.epcglobalinc.org/standards/rp/rp_1_1-standard-20060621.pdf�
http://www.epcglobalinc.org/standards/rp/rp_1_1-standard-20060621.pdf�

	Introduction
	Related Works
	Application Level Events
	Continous Queries Optimization
	Query Execution Pattern Analysis
	Query Model Analysis
	Cluster Queries
	Query Optimization

	Conclusions
	Acknowledgment
	References

